ORIE 5355: People, Data, & Systems

Lecture 6: Intro to Recommendations Systems

Nikhil Garg

Announcements

- Quiz 2 released yesterday, due Friday evening (via Canvas)
- HW 2 posted

Recommendation systems

Module overview

Part 1 (today) – Prediction

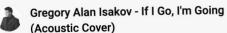
How much will a given user like an item?

- Problem formulation and some algorithms
- Data challenges

Part 2 (next) – From predictions to decisions

How to use the predictions to recommend items in practice?

- Capacity constraints
- Recommendations in 2 sided markets
- Feedback loops in recommendations



Chase Eagleson J 713K views • 1 year ago

【理性讨论小组】202 画空间 [艺术跨学科对

理性讨论小组 7 views • 2 days ago

Your Orders

Patio, Lawn & Garden

More Suggestions

Become part of the 2% of actors
who get called in and book.

GR -

& Entrepreneur

day

Grocery & Gourmet Food

Electronics

Join Group

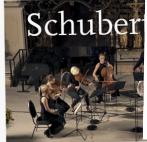
Solo Female Travelers (FIRST FB group for women who travel solo!)

87K members • 60 posts a day

Join Group

[SUB] Steamed Custard Buns :: Soft & fluffy :: Easy Recipe

매일맛나 delicious day 2M views • 4 months ago



Franz Schubert Octet in F Major, D 803

Hochrhein Musikfestival 1.4M views • 3 years ago

WALKING FOR PLEASURE. 15K members • 200 posts a day

Join Group

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users (Personalized recommendations)

Amazon, Netflix, ...

Personalized recommendations

- Motivation: filter the content to be more relevant for each individual
- Data Inferred from signals
 - Direct: ratings, feedbacks, etc
 - Indirect: purchase history, access patterns, etc
- Intermediate Goal: *predict* the relevance of each item for each user

Formal Model

- X = set of Users
- S = set of Items

Utility function $u: X \times S \rightarrow R$

R = Ratings that a user would give to an item if watched

R is a totally ordered set

e.g., **0-5** stars, real number in **[0,1]**

Ratings Matrix: suppose we have data \hat{R}

	Avatar	LOTR	Matrix	Pirates	In reality, the vast majority of
Alice	1		0.2		entries are missing
Bob		0.5		0.3	Goal: fill in the
Carol	0.2		1		missing entries!
David				0.4	Metric: mean squared error

Two Steps

Step 1: create a data matrix \hat{R} from signals you have

Step 2: fill in the missing entries using some prediction model

Step 1: Using explicit data

Just ask people what they think

Challenges: all the opinion collection challenges already talked about!

- Answering rates
- Measurement error: does a scale reflect how much they like something?
- Are people consistent over time?

Step 1: Implicit data

- You have many implicit signals about people's opinions
 - Do they finish watching the show, or start watching the next episode?
 - Do they keep coming back and buying other things
 - Did they browse other items instead of putting something in their cart?
 - Do they re-hire the same freelancer/work with the same client again?
- These give different information than do explicit ratings
 - From a different population of users
 - Often more numerous, but harder to analyze
 - "revealed preference" might be more predictive of future behavior
- Using such data
 - Train models to predict different future behavior, using various signals
 - Might take away "user agency" what if they want to change their behavior?

Step 2: Filling in the missing entries

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Possible strategies

- Content-based recommendations:
 - Use existing data on items to group together similar items
- User-similarity-based recommendations
 Find similar users and use data from each other (e.g., demographics)
- Matrix factorization
 - Automated way of finding the "dimensions" that matter

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Filling in entries with content-based

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Filling in entries with content-based

	Avatar	LOTR	Matrix	Pirates
Alice	1	1	0.2	
Bob	.5	0.5		0.3
Carol	0.2	.2	1	
David				0.4

Content-based Approach: Pros and Cons

+: No need for data on other users

No cold-start or sparsity problems for new items

+: Able to provide explanations

Can provide explanations of recommended items by listing contentfeatures that caused an item to be recommended

-: Finding the appropriate features is hard

E.g., images, movies, music

-: Recommendations for new users

How to build a user profile?

-: Overspecialization

Never recommends items outside user's content profile

User-similarity based recommendations

	Avatar	LOTR	Matrix	Pirates	
Alice	1	.5	0.2	.3	Similar idea, now just clump
Bob	1	0.5	.2	0.3	•
			4		together
Carol	0.2		1		users
David				0.4	

User-similarity based pros and cons

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

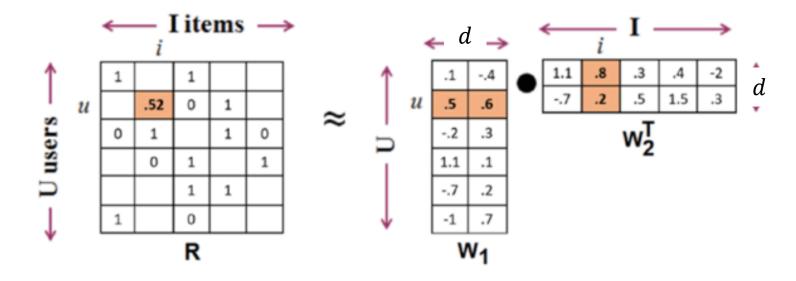
Matrix factorization — "Latent factor" models

- In previous approaches, we assumed we knew how items are related to each other, and how users are related to each other
 Items are represented by a "vector" of characteristics like genre
 Users by a "vector" of demographics, location, etc
- In reality, tastes may be complicated and based on subtle preferences unrelated to these things
- Idea: why not *learn* the vectors for each user and item from the history?
 - Learn vector $u_i \in \mathbb{R}^d$ for each user, $v_j \in \mathbb{R}^d$ for each item Such that $u_i \cdot v_j \approx \widehat{r_{ij}}$ (the rating user gave to the item in the past)

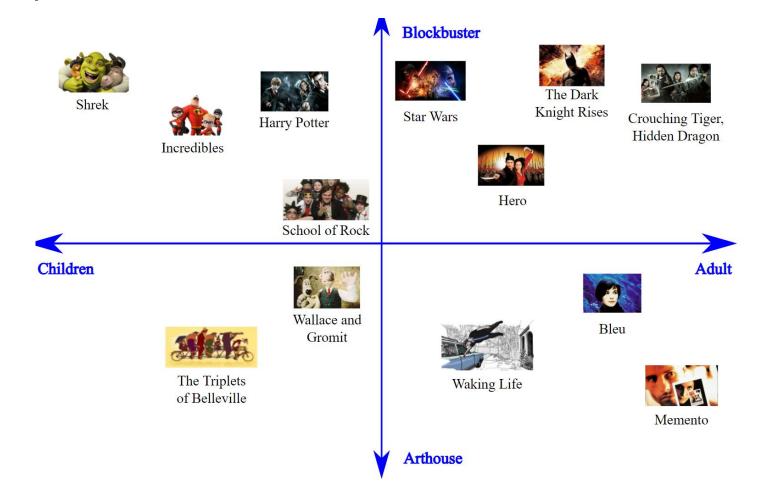
Matrix factorization – "Latent factor" models

Once we have $u_i \in \mathbb{R}^d$ for each user, $v_j \in \mathbb{R}^d$ for each item Such that $u_i \cdot v_j \approx \widehat{r_{ij}}$ (the rating user gave to the item in the past)

Then, for every pair of items and users that have not been rated: Set predicted rating $\mathbf{r}_{ij} = u_i \cdot v_j$



Example vectors with d=2



Matrix factorization: Pros and Cons

- +: Don't need to guess at what features matter
- -: Need historical data about each item and user
- -: Hard to provide explanations

In practice, matrix-factorization-based methods (and modern deep learning successors) are used when you have enough data

"Cold start" with matrix factorization

- Chief challenge in many settings: you don't have (a lot of) historical data on some new users or new items
 - How do you make recommendations for new users or items?
- Idea: Combine matrix factorization with content- and user- similarity based approaches
 - Step 1: Train matrix factorization model with dataset
 - Step 2: For new users [items] find "nearby" users [items] to them and initialize their vector using the nearby users [items]
 - Step 3: Over-time, update their vectors using their own history
- Determining "nearby" items: must use data like genre and demographics
- Key idea in many settings: At first without individual data, pretend someone is like the "average" user. Then with more data, start doing personalized things

Step 2: Vectors from "nearby" users

Suppose we have a demographic vector for each new and old user: [age, ethnicity, gender, income, ...]

- Simple: K nearest neighbors
 - Define a distance function on the vector of demographics
 - For each new user, find the K closest old users and average their vectors
 - Challenge: defining the distance function!
- Also simple: train matrix factorization with known user vector
 - Instead of learning vector $u_i \in \mathbb{R}^d$ for each user, $v_i \in \mathbb{R}^d$ for each item
 - Set u_i to the demographic vector, and just learn $v_i \in \mathbb{R}^d$ for each item
- Many other approaches:

Train a model using the demographics to predict u_i^k , each dimension k of u_i , using all the old users

Questions?